Part II – Resistance

Among the first antibiotics used on a large scale was penicillin, which was discovered in 1929 by Alexander Fleming. It was finally isolated and synthesized in large quantities in 1943. Penicillin works by interfering with the bacterial cell wall synthesis. Without a cell wall, the bacterial cells cannot maintain their shape in changing osmotic conditions. This puts significant selective pressure on the microbes to evolve, as they cannot survive the osmotic stress. Any microbe that can resist these drugs will survive and reproduce more, making the population of microbes antibiotic resistant.

The specific mechanism of penicillin is the prevention of cell wall synthesis by the β-lactam ring of the antibiotic (Fig. 3), which binds and inhibits an enzyme required by the bacterium in this process.

The enzyme is called penicillin-binding protein (PBP), even though it is an enzyme involved in cell wall synthesis. Normally enzymes have names that indicate what they do and end in the suffix -ase, like lactase, the enzyme that breaks down lactose. Figure 4 is a representation of PBP and its active site.

Bacterial cell walls are layered structures, where each layer is made of peptidoglycan, a sugar and protein polymer. Each layer is cross-linked to the next, strengthening the wall and allowing the cell to resist osmotic pressure. The way the enzyme PBP works is to form those cross-bridges by joining strings of amino acids together in the active site, which is a groove in the protein (Fig. 5).
The PBP takes amino acid residues attached to peptidoglycan layers and forms bridges between them within the active site groove. This cross-linking, or cross-bridging, stabilizes and strengthens the cell wall. β-lactam antibiotics interfere with the PBP enzyme by binding to the active site, blocking the site from the amino acids (Fig. 6).

There are over 80 natural and semi-synthetic forms of β-lactam antibiotics, including cephalothin and methicillin. Vancomycin also interferes with cell wall synthesis, but its mechanism of action is to bind directly to the cell wall components (Figs. 7 and 8).

Figure 6. Inhibition of PBP (penicillin-binding protein) by β-lactam blocking the active site.

Figure 7. PBP (penicillin-binding protein), the enzyme that allows the bacterial cell wall to form cross-bridges, is inhibited by the β-lactam family of antibiotics. This prevents proper cell wall synthesis and the bacterium will succumb to osmotic stress.
The first MRSA case was discovered in 1961 in a British hospital, and was the result of a mutation in the enzyme normally inhibited by the β-lactam ring of methicillin. The site where the antibiotic would bind no longer allowed access to the ring, so the enzyme continued to function normally. The microbe acquired a new gene that, when made into protein, was a different version of PBP, one that couldn’t be inhibited by penicillin.

Questions

1. Describe what is happening in Figures 7 and 8 in a complete sentence of your own words.
2. What are the differences in how β-lactam antibiotics and vancomycin work?
3. What other mechanisms might arise to allow resistance to the β-lactam antibiotics?
4. Could resistance arise to vancomycin? Why or why not?
Part III – Restoring Susceptibility

Katelyn had been working for Dr. Johnson for a month, and while she had become quite good at measuring inhibition zones, she didn't know why she was doing all this work. She had gotten very curious after she began doing all the measurements on a new set of antibiotics. This experiment involved infecting mice with MRSA and tracking how the MRSA grew over time.

Data were collected by counting the cells of MRSA taken from fluid samples from the mice. The cells were measured by taking one gram of the fluid and spreading it over plates, but now Katelyn counted the colonies that grew on the plate after 24 hours. Because there were so many, she actually measured the colonies as “log CFU/g.” A CFU is a colony forming unit, or essentially a cell that will divide into a colony that can be seen. Because there can be so many, Katelyn measured them on a logarithmic (log) scale. The raw data in her lab notebook looked like the following:

<table>
<thead>
<tr>
<th>Trial</th>
<th>Control</th>
<th>FtsZ inhibitor</th>
<th>Imipenem</th>
<th>FtsZ inhibitor + imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.11</td>
<td>7.55</td>
<td>6.98</td>
<td>2.21</td>
</tr>
<tr>
<td>2</td>
<td>8.25</td>
<td>8.12</td>
<td>8.12</td>
<td>4.55</td>
</tr>
<tr>
<td>3</td>
<td>9.05</td>
<td>9.27</td>
<td>9.01</td>
<td>7.98</td>
</tr>
<tr>
<td>4</td>
<td>9.37</td>
<td>8.02</td>
<td>8.33</td>
<td>5.64</td>
</tr>
<tr>
<td>5</td>
<td>8.80</td>
<td>7.65</td>
<td>7.64</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>9.25</td>
<td>8.3</td>
<td>7.77</td>
<td>9.98</td>
</tr>
<tr>
<td>7</td>
<td>9.41</td>
<td>7.99</td>
<td>8.21</td>
<td>6.78</td>
</tr>
<tr>
<td>8</td>
<td>9.11</td>
<td>7.71</td>
<td>7.98</td>
<td>3.45</td>
</tr>
<tr>
<td>9</td>
<td>8.61</td>
<td>8.22</td>
<td>7.68</td>
<td>2.45</td>
</tr>
<tr>
<td>10</td>
<td>9.12</td>
<td>8.11</td>
<td>8.21</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table 1. Effect of treatment on MRSA in mice after 24 hours of drug treatment as log CFU/g.

Questions

1. What do you think the experimental question is?
2. What hypotheses can you come up with to answer the experimental question?
3. What predictions would you make for each hypothesis?
4. Looking at the data in Table 1, what do these numbers mean? (Keep in mind a log value means each integer increase is actually a ten-fold increase in the number of cells.)
5. What do you think FtsZ inhibitor and imipenem are?

Next, Katelyn further analyzed the data she collected by calculating the average and standard error.

Table 2. Average effect of treatment on MRSA in mice after 24 hours of drug treatment (log CFU/g).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>FtsZ inhibitor</th>
<th>Imipenem</th>
<th>FtsZ inhibitor + imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>9.008</td>
<td>8.094</td>
<td>7.993</td>
<td>4.53</td>
</tr>
<tr>
<td>SE</td>
<td>0.114</td>
<td>0.153</td>
<td>0.169</td>
<td>0.954</td>
</tr>
</tbody>
</table>

Question

6. Does Table 2 change your interpretation of the experimental data from Question 4? Why or why not?
Katelyn was very excited by the results, but she didn’t know what an FtsZ inhibitor was, or what imipenem was. She decided to ask Dr. Johnson what his research was all about.

“Dr. Johnson, look at these results I got from the last round of plates,” Katelyn said as she handed him a copy of the results above. “What exactly are we testing here?”

Dr. Johnson looked at the results and smiled. “These are great! This could really change the way we deal with antibiotic resistance.

“To answer your question, β-lactam antibiotics are still the most heavily used antibiotics, though resistance is a big problem. Most treatments have changed to using multidrug regimens in the hopes of allowing the antibiotic to still function while at least slowing down the resistance mechanism.

“Another approach involves looking for other proteins that could be inhibited, and looking for existing inhibitors to make into drugs. Instead of looking just for new antibiotics, we’re looking for new targets.”

Dr. Johnson handed Katelyn a few papers to read. In them she learned that the protein, FtsZ, helps “pinch off” the new cells at the end of cell division. This involves interacting with the cell wall as it is synthesized, and if FtsZ is interfered with, cell wall synthesis stops too. This prevents cell division and the microbe can no longer reproduce.

Dr. Johnson tested the new target idea by using a recently discovered inhibitor of FtsZ to see what effects that had on a MRSA infection. As part of the study, the inhibitor was tested by itself and in combination with imipenem, a β-lactam antibiotic, resulting in the data above.

Questions

7. How effective was the FtsZ inhibitor alone? Imipenem alone?
8. How effective was the combination of the inhibitor and the β-lactam antibiotic?
9. How would you explain these results?
10. What questions would you pursue next?

Figure 9. Effects of treatments on MRSA numbers in mice. Samples were taken at 24 hours post-infection. (Figure modified from Tan et al. 2012).